Artificial Intelligence Cracks Quantum Chemistry Conundrum

Image

INTORDUCTION

Quantum chemistry, also called molecular quantum mechanics, is a branch of chemistry focused on the application of quantum mechanics in physical models and experiments of chemical systems. Understanding electronic structure and molecular dynamics using the Schrödinger equations are central topics in quantum chemistry.

HISTORY

Some view the birth of quantum chemistry as starting with the discovery of the Schrödinger equation and its application to the hydrogen atom in 1926However, the 1927 article of Walter Heitler (1904–1981) and Fritz London is often recognized as the first milestone in the history of quantum chemistry. This is the first application of quantum mechanics to the diatomic hydrogen molecule, and thus to the phenomenon of the chemical bond. In the following years much progress was accomplished by Robert S. Mulliken, Max Born, J. Robert Oppenheimer, Linus Pauling, Erich Hückel, Douglas Hartree, Vladimir Fock, to cite a few..

MACHINE LEARNING

A new machine learning tool can calculate the energy required to make — or break — a molecule with higher accuracy than conventional methods. While the tools can currently only handle simple molecules, it paves the way for future insights in quantum chemistry.

Using machine learning to solve the fundamental equations governing quantum chemistry has been an open problem for several years, and there’s a lot of excitement around it right now.

A molecule’s electronic structure is a tricky thing to calculate, requiring the determination of all the potential states the molecule’s electrons could be in, plus each state’s probability.

Since electrons interact and become quantum mechanically entangled with one another, scientists can’t treat them individually. With more electrons, more entanglements crop up, and the problem gets exponentially harder. Exact solutions don’t exist for molecules more complex than the two electrons found in a pair of hydrogen atoms. Even approximations struggle with accuracy when they involve more than a few electrons.

One of the challenges is that a molecule’s electronic structure includes states for an infinite number of orbitals going farther and farther from the atoms. Additionally, one electron is indistinguishable from another, and two electrons can’t occupy the same state. The latter rule is a consequence of exchange symmetry, which governs what happens when identical particles switch states.

In the future, the researchers aim to tackle larger and more complex molecules by using more sophisticated neural networks. One goal is to handle chemicals like those found in the nitrogen cycle, in which biological processes build and break nitrogen-based molecules to make them usable for life. 

The other two groups use a similar approach to one another that doesn’t limit the number of orbitals considered. This inclusiveness, however, is more computationally taxing, a drawback that will only worsen with more complex molecules. With the same computational resources, the approach by Carleo, Choo and Mezzacapo yields higher accuracy, but the simplifications made to obtain this accuracy could introduce biases.

The journal invites different types of articles including original research article, review articles, short note communications, case reports, Editorials, letters to the Editors and expert opinions & commentaries from different regions for publication.

A standard editorial manager system is utilized for manuscript submission, review, editorial processing and tracking which can be securely accessed by the authors, reviewers and editors for monitoring and tracking the article processing. Manuscripts can be uploaded online at Editorial Tracking System (https://www.longdom.org/editorial-tracking/publisher.php) or forwarded to the Editorial Office at https://www.longdom.org/swarm-intelligence-evolutionary-computation.html The Journals includes around 150Abstracts and 100 Keynote speakers have given their valuable words. The meet has provided a great scope for interaction of professionals including in addition to clinical experts and top-level pathologists and scientists from around the globe, on a single platform.

 

Media Contact:

Sarah Rose

Journal Manager

International journal of swarm intelligence and evolutionary computation

Email: evolcomput@journalres.org