A BRIEF OVERVIEW OF ANT COLONY OPTIMISATION

Image

Introduction

Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

Example for ant colony optimization

The easiest way to understand how ant colony optimization works is by means of an example. We consider its application to the traveling salesman problem (TSP). In the TSP a set of locations (e.g. cities) and the distances between them are given. The problem consists of finding a closed tour of minimal length that visits each city once and only once.

To apply ACO to the TSP, we consider the graph defined by associating the set of cities with the set of vertices of the graph. This graph is called construction graph. Since in the TSP it is possible to move from any given city to any other city, the construction graph is fully connected, and the number of vertices is equal to the number of cities. We set the lengths of the edges between the vertices to be proportional to the distances between the cities represented by these vertices and we associate pheromone values and heuristic values with the edges of the graph. Pheromone values are modified at runtime and represent the cumulated experience of the ant colony, while heuristic values are problem dependent values that, in the case of the TSP, are set to be the inverse of the lengths of the edges.

The ants construct the solutions as follows. Each ant starts from a randomly selected city (vertex of the construction graph). Then, at each construction step it moves along the edges of the graph. Each ant keeps a memory of its path, and in subsequent steps it chooses among the edges that do not lead to vertices that it has already visited. An ant has constructed a solution once it has visited all the vertices of the graph. At each construction step, an ant probabilistically chooses the edge to follow among those that lead to yet unvisited vertices. The probabilistic rule is biased by pheromone values and heuristic information: the higher the pheromone and the heuristic value associated to an edge, the higher the probability an ant will choose that edge. Once all the ants have completed their tour, the pheromone on the edges is updated. Each of the pheromone values is initially decreased by a certain percentage. Each edge then receives an amount of additional pheromone proportional to the quality of the solutions to which it belongs (there is one solution per ant).

This procedure is repeatedly applied until a termination criterion is satisfied.

The journal invites different types of articles including original research article, review articles, short note communications, case reports, Editorials, letters to the Editors and expert opinions & commentaries from different regions for publication.

 

A standard editorial manager system is utilized for manuscript submission, review, editorial processing and tracking which can be securely accessed by the authors, reviewers and editors for monitoring and tracking the article processing. Manuscripts can be uploaded online at Editorial Tracking System (https://www.longdom.org/editorial-tracking/publisher.php) or forwarded to the Editorial Office at https://www.longdom.org/swarm-intelligence-evolutionary-computation.html The Journals includes around 150Abstracts and 100 Keynote speakers have given their valuable words. The meet has provided a great scope for interaction of professionals including in addition to clinical experts and top-level pathologists and scientists from around the globe, on a single platform.

 

Media Contact:

Sarah Rose

Journal Manager

International journal of swarm intelligence and evolutionary computation

Email: evolcomput@journalres.org